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FOREWORD

As part of the on-going research program in "Decision Control

Models in Operations Research," Mr. Richard Ehrhardt has investigated

the structure of an inventory model with stochastic replenishment de-

livery lead times. The existing literature on this topic has been

corrected and extended to encompass myopic optimal policies for finite

planning horizons and optimal stationary (s,S) policies for infinite

planning horizons. Efficient methods for computing infinite-horizon

(s,S) policies are also given. An adaptation of the Power Approximation

(Technical Report #7) is found to provide excellent performance relative

to optimal policies. Several sections of this report parallel similar

findings in earlier reports. Other related reports dealing with the

research program are listed on the following pages.

Harvey M. Wagner
Principal Investigator

Richard Ehrhardt
Co-Principal Investigator
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(s,S) POLICIES FOR A DYNAMIC INVENTORY MODEL

WITH STOCHASTIC LEAD TIMES

Richard Ehrhardt
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- Abstract -

A stochastic lead time inventory model is analyzed under the

assumptions that (1) replenishment orders do not cross in time and (2)

the lead time distribution for a given order is independent of the num-

her and sizes of outstanding orders. This study corrects errors in the

existinq literature on the finite-horizon version of the model and

yields an intuitively appealing dynamic program that is nearly iden-

tical to one that would apply in a transformed model with all lead

times fixed at zero. Hence, many results that have been derived for

Fixed lead time models generalize easily. Conditions for the opti-

mality of (s,S) policies are established for both finite and infinito

planning horizons. The infinite-horizon model analysis is extended by

adapting the fixed lead time results for the efficient computation of

optimal and approximately optimal 's,S) poli i,,s.
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(s,S) POLICIES FOR A DYNAMIC INVENTORY MODEL

WITH STOCHASTIC LEAD TIMES

We consider a periodic review, single-item inventory system where

unfilled demand is backlogged, demands during review periods are inde-

pendent, and the lead time between placement and delivery of an order

imay vary randomly. We require the joint distribution of lead times to

have the properties that (1) replenishment orders do not cross in time

and (2) the marqinal lead time distribution of each order is indepen-

dent of the number and size of outstanding orders. These assumptions

could be appropriate in practice when, for example, only a single sup-

plier is used and when the stocking organization places orders that

are small and infrequent from the supplier's point of view. Replenish-

mont costs are comprised of a setup cost and a cost that is linear in

the, amount ordered; holding and shortage costs are incurred in each

priod as a function of period-end inventory. Our criterion of opti-

mality is minimization of the expected discounted cost incurred durinq

ai planninq horizon which may be finite or infinite. Alternatively,

when we consider an undiscounted, infinite-horizon model, our criterion

is- minimization of the expected cost per period.

A finite-horizon model of this system was analyzed by Kap arn [4]

under the additional assumptions of stationarity of all mudel pa ra-

meters and continuously distributed demand. The priuicipatl resli w,,en

(1 ) that optimal policies can he com1puted usirl a yrioamir pre;rml h, v i,

oi7ly a -,s.alar state variahle, representinq invorit m n i d 11t 1wp ! ,i

order before ordering and (2) sufficient conditions can he 1W',me' ()
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the optimality of base stock policies and (s,S) policies. Although

the findings in [4] represent a breakthrough in the study of stochas-

tic lead time systems, the results had two complicating features that

are not present in fixed lead time models. First, the parameters of

the dynamic program were not simply related to the marginal lead time

distribution. Second, sufficient conditions were not found for the

optimality of myopic ordering policies.

In this paper we correct two technical flaws existing in [4],

allowing an intuitively appealing analogy with a zero-lead-time model.

Then we establish conditions for the optimality of myopic base stock

policies and present generalized conditions for the optimality of

(s,S) policies. We also extend the model to encompass infinite plan-

nlinq horizons and show that optimal (s,S) policies exist under standard

conditions on the cost functions. Finally, we present efficient aliq-

rithms for computing optimal and approximately optimal (s,S) policies

in the infinite-horizon setting.

1. MODEL SPECIFICATION

We initially consider a finite planning horizon of N periods,

nimibered backwards from the end of the horizon; that is, the final

period is liven number 1, and the initial period is given number N.

Demands in successive r)eriods are independently, but not necessarily

identically, distributed. Specifically, let the demand in period n

be repre(nted by the random variable Dn with mean jin and cumula-

tive distribution function n Also, let , i. j , i - i, be the

he the convolution of ,. . ... j" We assume complete backlojging of
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unsatisfied demand, so negative inventory levels are permitted. Aim.

there are no losses from the system other than through demand sati'factini.

Costs in different periods are related by the single period di,cormt

factor t.. Let c n(z) be the cost of ordering z units in period ii,

with

Cn (z) = KnH(z ) + cnZ

where

0 , z 0

l, Z > .

We assume that both the setup cost K and the linear portion of then

replenishment cost are paid upon delivery of the order. This assumrption

does not entail a loss of generality, since oaynient of either portion

at the time of ordering can be described via scaling K or c t y thon
L

expected value of t , where L is the random lead time.

Let Ln(x) represent the holding and shortaae costs in period t,

where x is the ending inventory level in that period. Also w, de' in,,

the function

qn(i,y) ELn [Y- ( n  + in __H)n " " n-

0' Ln i (y -u ) d, n (kl

',I , specify rel)lenishment lead times as identic,,lly distributed

ran(ini variables which can take on values from], zero no to a fi \d (a.

rIfirl . le1 a gjiven lead time be represented by thr, random variahle I

haivi, tire probability distribution
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i = P{L=i}, i=O,... ,m

The joint distribution of lead times is characterized by our assumptions

that (1) replenishment orders do not cross in time and (2) the lead time

of an order is independent of the number and size of outstanding orders.

Following the development in [4], we focus on a single ordering

decision, and let V be the number of outstanding orders immediately

after the current order and before deliveries are received. Let

U (- V) be the number of outstanding orders after the current delivery.

Now if V is less than U in a given period, we know that only the

oldest orders (U-V of them) must have been delivered. This is a

consequence of our assumption that orders do not cross in time. Fur-

thermore, our second lead time assumption (the lead time of an order

is independent of the number and sizes of outstanding orders) implies

that the dynamics of order deliveries are specified by a sequence of

m + 1 non-negative numbers {poPl ... ,pm}. It is shown in [4] that

Spj, j =0 or ji

P{U=JtV=i} =

- Pk' ik=O

where

m
>-' pk =1
k=O

The analysis in [4] is conducted entirely in terms of the pj's,
Ir

as opposed to the Q.'S. An expression relating the p i s to the
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.'s is given on p. 495 of [4], but it is incorrect. We derive theJ

correct relationship by noting that the probability Zi that IL r ii

is given by the product of probabilities that it is not delivered ir

each of i delivery epochs (0,I,2,....i-l periods after ordering)

and the probability that a delivery is made i periods after ordering.

We have

P O , i =

(p 0)(pP) .. - E p) pj, i=1,....
j=O j=0

(2)

Although our derivation of (2) is original, we note that it also

appears in Nahmias [5, p. 913]. Since the substantive results of [4]

do not depend upon the relationship between the pi's and 'i's,

they remain valid. We will show, however, that the interpretation ot

the dynamic program in [4] is simplified by (2).

The final aspect of model specification concerns the costs which

must be included in computing optimal policies. We include all cost-,

that are incurred during periods N through 1, plus those that occur

in the following m periods due to orders placed during the planninaI

horizon. A terminal reward (or salvage value) is also applied to the

inventory level at the end of the horizon. This differs from [41,

which only considers costs incurred in periods N through 1, and

sets the terminal reward arbitrarily at zero for all terminal states.

We regard this to be another flaw in [4]. Also, we will show that. (om

change in cost, accounting allows us to derive conditions for the

optimality of myopic base stock policies.
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2. FINITE PLANNING HORIZONS

The central finding in [4] is that all policy-dependent costs

can be included in a dynamic program that has inventory on hand plus on

order as its only state variable. Let hn (x) be the minimum expected

discounted cost when x is the inventory on hand plus on order inime-

diately before ordering in period n. We have

hn(X) = mi n  9,ii[K nH(y-x) + (Y-X)cn + gn(i'Y)]
y !x i=O 1n

+ oEhn 1 (Y-Dn)( (3)

m i

h0 (x) = -c 0x Z a zi
i=O

Recursion (3) differs significantly from those given in [4] only in that

our cost accounting includes additional terms at the end of the horizon,

as described above at the end of Section 1. Now let

Ec L = c i i ,
i=O

mk n(Y) Otlxa ign(i,y)/m
i=O

and

F n(X) h n(x)/6
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Recursion (3) can be rewritten in terms of this notation as

Fn (x) i y nKH(y-x) + (y-x)cn + kn (y) + ,[-Fnl(y-D n) I
(4)

F0 (x) -C0x 
(

Notice that (4) is of the same form as a recursion for a zero-lead-time

system with k n(.) representing the single-period expected holding and

shortage costs.

Following the approach of Veinott [8], we establish sufficient

conditions for the optimality of myopic base stock policies. Consider

the zero-lead-time analogy for recursion (4), and let Fn (x nIY) be

the expected discounted cost in periods n through 0 when followinq

a particular ordering policy Y and x is the starting inventory in

period J. Also let jy i , i=1,... N} be the sequence of inventory on

hand after ordering and before demand. Then one can show that

I(XY) = " ni[ [K(Yi-xi) + Gi(Yi) ] + [i- i 0- c l1 c x

(5)

where

Gn (y) = (cn -cc Cnl)y + kn(y) . (6)

The functions G n(.) are composites of expected holdinq and shortaqo

costs and the linear purchase costs. They can be interpreted (Veinott

and Wagner [101) as the conditional expected holdinq and shortage co.,t

functions of an equivalent model with unit purchase costs ( set equal
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to zero. We shall use this interpretation, and hereafter refer to

G n(-) as a conditional expected holding and shortaqe cost furk tion.

Consider the case of K = 0 for all n. It follows that ii
n

-('n (y) is unimodal with a minimum at yn and if

9n - Dn ' Yn-l' n=2,....N

with probability one, then it is optimal to order max(n - xn , 0) ii

period n. For alternative conditions that ensure the optimality of

myopic base stock policies, see [8].

An interesting parallel to the fixed lead time problem drises iii

th, solution for the base-stock values {Yiq i=l,...,N when demand has

a (density and the single-period holding and shortage costs are (liven hy

L n(x) = h max(x,O) + p max(-x,O), n--m+l ,... ,N (7)

Then one can show that Yn is a solution to

n

0 n(n (P- n +'c )/(h'p)

where

nl

n (y) E 'X1 i n -i(y)/

Notice that the functions ) (y) are linear combinations of convoluted

demand distributions and are legitimate distribution functions in the m

own riqlht.

Mhen the model does not possess an optimal myopic base-stocO

pujliy., we con.ider the function



t (X Y) = F n(X lY)- n- l  ci i X

= III n n-E iKH(Yi-Xi + i( n

i=l

Notice that all policy-dependent costs are included in f n(X nlY).

1herefore. an optimal policy can be found by computing

fn (x) = min fn(XIY)

Y

r, jinq the dynaic programnming recursion

f n(x) = Min KnH(y-x) + G n(y) + (xEfn-l (y-Dn), n=l ,. N
y-x

ro(x) (1 I
Expression (8) is easily recognized as a standard form in inventory

theory. Therefore, conclusions about the structure of optimal poli(ie;

are immediate. For example, if Kn = 0 for all n, one can show [)

that ,ia hase-stock policy is optimal when Gn(y) is convex for all .

Ihe base stock levels are (liven by the values Iy, n-..NI that

iliiilizo the expression in braces on the right-hand side cf (2,).

For models havinq K > 0 for at least one value of n, we

cit, two theorems from [enardo [11 which guarantee the optimal i ty of

(s, ,) oolicies. Let

1n(y) Gn(Y) + cEf n-(y-[)n) n



10

arid define S and s 11as solutions to

3 n (S n) minjJ Jn(Y)l (9)
y

a nd

sn=infly --S n i n (y) = K n + J Sn) (10)

Theorem-1 . o t'hc J'oI owinli t02Pet? -on17.tion,, zTh*'t

I ) (, !~"on OCx Wbc?1 n > /,~

&') ~ cv I,' x 4C for ni=1, . . . ,, V5

n+ C(-. 0 +'1i'i foIC JO 7=~I

wiow



k f'o Y ?!=7, AI-?..

II

Other sets of conditions for the optimality of (s,S) policies exist.

See, for example, Veinott [9] and Schal [7].

3. INFINITE PLANNING HORIZONS

,!e consider an infinite horizon version of our model in which all

lata are stationary. Our notation is simplified in this settinq by ,i'-

pressJn(i subscripts that denote period numbers whenever the quantity of

interest does not vary with time. Hence, recursion (8) becomes

f(x) 1,in. Klf(y-x) + G(y) + tFf ( y-D) n
n0  y) n-1

fo0(X) f)

wi e re

G(y) (l- )cy + k(y) ,

In

i=O

Pecursion (11) is just like one for d fixed-.t .,.d-time h1odpl.

with ((y) renresentinq the conditional expected holdinq and 'hort,';f,

(nstS. Hlence, we know that if G(y) is convex, a stitionarv (

policy is optimal in (11) as n approaches infinity. T he com lu,im

is supported by the arqument in Il ehart [3], which al o I , tab Ii ho ,

thf. oxit nce of
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f(x) = lim f n(x)n -n

Also from [3], we know that f(x) satisfies the functional equation

f(x) = nin{KH(y-x) + G(y) + c Ef(y-D) kl3)

The only difference between (13) and a fixed-lead-time model i'

in the function G(-). In fact, G(.) can be expressed in the same

formi as the conditional expected holding and shortage cost function of

a fixed-lead-time mudel with a transformed demand distribution. WJe have

G(y) (l-ct)cy + k(y)

in
(l-c)cy + Y QIkig(i'y)/O

i=O

m Z) 00

where : is the j-fold convolution of the demand distribution

Hence, G(.) can be expressed in the form

G(y) = (l-cx)cy + L(y-u)dYX (u) , 14)
0

where

m . (i+l)
(x) x) )

i=O I

Notice that the function Y (.) has all the properties of a distrihulion
(1

function. Therefore, we call Y,(.) the discounted lead time demand

di -Jrihution.
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When demand is discrete and G(.) is convex, expressbion (14) ind

(15) allow a simple adaptation of the efficient Veinott-Waqner procedjre

[10] for computing optimal (s,S) policies. In [10] a fixed lead time

is assumed, and the conditional holding and shortage cost function i ,

computed using the convoluted lead time demand distribution 1{*(P+l)

To adapt [10] for our stochastic lead time model, we merely substitute

T' in place of *)*X+l) in any computation related to G(,). Specifi-

cally, the important expressions in [9] that require modification are

(20), (21), (22), (23), (26), (27), and the two unnumbered expressi0ons

immediately preceding (21).

We have performed computations using the procedure described

above. We summarize the results below, in Section 4.

We conclude this section with a discussion of approximately

optimal (s,S) policies for the infinite horizon model. We have just

shown how to compute optimal (s,S) policies by modifying a fixed-

lead-time procedure. Basically the same kind of modification can he

used to compute approximately optimal (s,S) policies as well.

[or example, consider the common assumptions of I= nd

linear holding and shortage costs [as given by (7)]. This (,oel waV.

analyzed by Roberts [6], who used asymptotic renewal theory to charac-

toriz the limiting behavior of an optimal policy (s ,S ) as the

par,,ietors K and p grow large. He obtained the followingi oxpres-

,ionv; tor optimal policy parameters s and ) S - s , a'; P

D = v,2Ku/h + o(1) )

,(u-s (u) D*/(1+p/h) + o(. )

S



where A is the fixed lead time, ji is the single period demand mear.

and o(D )/D conver(ges to zero as D becomes infinite. These ex-

pressions were used by Ehrhardt [2] to construct an approximately opf imol

policy (the Power Approximation) that is easy to compute and require" tor

demand information only the mean and variance of demand. Specifically,

the Power Approximation requires the single-period demand mean and
var an e, a d 2 as well as the mean and variance of '*(I+] )

2

if and 1 2
k V

We suggest modifying the Power Approximation for our stochast ic
2

lead time model by replacing If and o with the mean and variance

2of P, 1ZIand o Specifically, expressions (13) - (16) in [i

require this change. In computing 1, and c,2, we note that I

implies that 1 = also. Therefore

= udl(u)

'l_ 0l'udl*il) (u)

IlI

= 2-,i(i+l ) (EL+l), , (1 ,
i=O

and

-2

- lu l Vda r ( ( u )[

= (EL+I ),,2 + 112Var(L)i,
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Notice that i and o2 are merely the mean and variance of deuianri

durinq (L+Il) periods. The use of (16) and (17) in place of il and

2 is a familiar heuristic approach for modifying a fixed lead time:

policy. Until now, however, this approach has not been theoretically

justified for periodic review systems.

W)e assess the effectiveness of the modified Power Approximation

i.i Section 4, below, where it is compared with optimal policies for a

variety of parameter settings.

4. NUMERICAL RESULTS

We have performed computations using the procedures described

above for infinite horizon problems. In this section we consider a

set of twelve inventory items under a variety of assumptions about the

distribution of lead time. First, we show how optimal expected costs

vary with the variance of the lead time distribution. Then we compare

the performance of optimal policies with that of the Power Approximation

as modified by (16) and (17).

Consider a system of 12 inventory items, each having a negative

binomial demand distribution with a variance-to-mean ratio of 3.

Mean demand 1j has three values, 2, 4, and 8. Each item has

linear holding and shortage costs as given by (7). Since the total

cost function is linear in the parameters h, p, and K, the valJmr-

of the unit holding cost is a redundant parameter which is set at

unity. The unit shortage costs are 4 and 9, and the setup cost

values, are 32 and 64. All combinations of these parameter settinq

are included, yielding 12 items.
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We consider the four lead time distributions displayed in

Table I. Each is a symmetrical triangular distribution over the ranie

[0,4], with a mean value of 2. The variance of lead time ranges froi

a minimum of 0 for the deterministic case to a maximum of 2 for the

uniform distribution. We also list the coefficient of variation - of

each lead time distribution, which is defined as the ratio of the

standard deviation to the mean.

TABLE I

Lead Time Distributions

Probability Mass i. i=09... ,4

i: 0 1 2 3 4 EL VarL y

0 0 1 0 0 2 0 0

0 .250 .500 .250 0 2 .50 .354

.0667 .2333 .4000 .2333 .0667 2 1.00 .500

.2 .2 .2 .2 .2 2 2.00 .707

Table II shows optimal total cost per period as a function of

parameter values for each of the four lead time distributions given

in Table I. Notice that the total aggregate cost of the 12 items,

increases monotonically with lead time variance. The largest lead

time variance yields an optimal total cost of 327 for the 12 item'*.

17, higher than the deterministic lead time cost of 280. When cn)ts

are aggregated by parameter values, we see that the larger lead time

variances produce slightly larger cost increases for items with a
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penalty cost p of 9 than for those with p equal to 4. Slightly

larger cost increases are also displayed for items with a setup cost

K of 32 as opposed to those with K equal to 64. The bulk of the

cost increase, however, can be attributed to items with the largest

value of mean demand. Notice that items with p equal to 8 shows a

24'. increase in total cost from 126 for the deterministic lead time

system to 156 for the high lead time variance system. The corres-

ponding percentage increase for items with p equal to 2 is merely

0 . This fact is not surprising, since we have held the demand variance-

to-mean ratio constant. Therefore, items with the largest mean demand

also have the largest variance of demand, yielding especially large

values of o2 in (17).

TABLE II

Optimal Total Cost per Period of 12 Items for

4 Different Lead Time Distributions

Costs Aggregated by Parameter Value
Lead Time Aggregatetal Penalty Cost -Set-up - -C-ost M ean Demand

Mean Variance Cost 4 9 32 64 2

2 0 280 129 150 124 156 64 90 126

2 1/2 293 135 159 131 162 65 93 11,1

2 1 306 140 166 137 168 66 96 143

2 2 327 149 173 149 179 69 - lo 156
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Table III lists percentage increases in expected total cost per

period when Power Approximation policies are compared with optimal

policies. The Power Approximation yields costs within a few tenths of

a percent of optimal for all parameter settings. This level of per-

formance is comparable with the data in [2], where only deterministic

lead times were considered.

TABLE III

Percentages Above Optimal Total Cost per Period for

12-Item Systems Under Approximately Optimal Control

Costs Aggregated by Parameter Value
Lead Time Total

Aggregate Penalty Cost Setup Cost Mean Demand
Mean Variance Cost 4 9 32 64 2 4 8

2 0 0.1 0.2 0.1 0.1 0.3 0.2 0.2 0.1

2 1/2 0.2 0.2 0.1 0.1 0.2 0.3 0.1 0.2

2 1 0.2 0.3 0.1 0.2 0.1 0.2 0.2 0.1

2 2 0.3 0.3 0.2 0.4 0.2 0.0 0.3 0.4
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